Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
Acs Applied Polymer Materials ; 5(3):1657-1669, 2023.
Article Dans Anglais | Web of Science | ID: covidwho-2309001

Résumé

The current global health crisis caused by the SARS-CoV-2 virus (COVID-19) has increased the use of personal protective equipment, especially face masks, leading to the disposal of a large amount of plastic waste causing an environmental crisis due to the use of non-biodegradable and non-recyclable polymers, such as polypropylene and polyester. In this work, an eco-friendly biopolymer, polylactic acid (PLA), was used to manufacture hierarchical nanoporous microfiber biofilters via a single-step rotary jet spinning (RJS) technique. The process parameters that aid the formation of nanoporosity within the microfibers were discussed. The microstructure of the fibers was analyzed by scanning electron microscopy (SEM) and a noninvasive X-ray microtomography (XRM) technique was employed to study the three-dimensional (3D) morphology and the porous architecture. Particulate matter (PM) and aerosol filtration efficiency were tested by OSHA standards with a broad range (10-1000 nm) of aerosolized saline droplets. The viral penetration efficiency was tested using the phi X174 bacteriophage (similar to 25 nm) with an envelope, mimicking the spike protein structure of SARS-CoV-2. Although these fibers have a similar size used in N95 filters, the developed biofilters present superior filtration efficiency (similar to 99%) while retaining better breathability (<4% pressure drop) than N95 respirator filters.

SÉLECTION CITATIONS
Détails de la recherche